Dynamics of catalytic tubular microjet engines: dependence on geometry and chemical environment.
نویسندگان
چکیده
Strain-engineered tubular microjet engines with various geometric dimensions hold interesting autonomous motions in an aqueous fuel solution when propelled by catalytic decomposition of hydrogen peroxide to oxygen and water. The catalytically-generated oxygen bubbles expelled from microtubular cavities propel the microjet step by step in discrete increments. We focus on the dynamics of our tubular microjets in one step and build up a body deformation model to elucidate the interaction between tubular microjets and the bubbles they produce. The average microjet velocity is calculated analytically based on our model and the obtained results demonstrate that the velocity of the microjet increases linearly with the concentration of hydrogen peroxide. The geometric dimensions of the microjet, such as length and radius, also influence its dynamic characteristics significantly. A close consistency between experimental and calculated results is achieved despite a small deviation due to the existence of an approximation in the model. The results presented in this work improve our understanding regarding catalytic motions of tubular microjets and demonstrate the controllability of the microjet which may have potential applications in drug delivery and biology.
منابع مشابه
Poisoning of bubble propelled catalytic micromotors: the chemical environment matters
Self-propelled catalytic microjets have attracted considerable attention in recent years and these devices have exhibited the ability to move in complex media. The mechanism of propulsion is via the Pt catalysed decomposition of H2O2 and it is understood that the Pt surface is highly susceptible to poisoning by sulphur-containing molecules. Here, we show that important extracellular thiols as w...
متن کاملCorrosion of self-propelled catalytic microengines.
Here we show that rolled-up and electroplated catalytic microjet engines undergo dramatic corrosion in fuel solution.
متن کاملCFD Simulation of Dry and Wet Pressure Drops and Flow Pattern in Catalytic Structured Packings
Type of packings and characteristics of their geometry can affect the flow behavior in the reactive distillation columns. KATAPAK SP is one the newest modular catalytic structured packings (MCSP) that has been used in the reactive distillation columns, recently. However, there is not any study on the hydrodynamics of this packing by using computational fluid dynamics. In the present work, a 3D ...
متن کاملC3nr34213a 2909..2914
Self-propelled catalytic microjets have attracted considerable attention in recent years and these devices have exhibited the ability to move in complex media. The mechanism of propulsion is via the Pt catalysed decomposition of H2O2 and it is understood that the Pt surface is highly susceptible to poisoning by sulphur-containing molecules. Here, we show that important extracellular thiols as w...
متن کاملControlled manipulation of multiple cells using catalytic microbots.
Self-propelled microjet engines (microbots) can transport multiple cells into specific locations in a fluid. The motion is externally controlled by a magnetic field which allows to selectively load, transport and deliver the cells.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanoscale
دوره 3 12 شماره
صفحات -
تاریخ انتشار 2011